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Cooling atom-cavity systems into entangled states
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Generating entanglement by simply cooling a system into a stationary state which is highly entangled has
many advantages. Schemes based on this idea are robust against parameter fluctuations, tolerate relatively large
spontaneous decay rates, and achieve high fidelities independent of their initial state. A possible implementation
of this idea in atom-cavity systems has recently been proposed by Kastoryano et al., [Kastoryano et al.,
Phys. Rev. Lett. 106, 090502 (2011)]. Here we propose an improved entanglement cooling scheme for
two atoms inside an optical cavity which achieves higher fidelities for comparable single-atom cooperativity
parameters C. For example, we predict fidelities above 90% even for C as low as 20 without having to detect
photons.
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I. INTRODUCTION

Current atom-cavity experiments with coupling constants
g, cavity decay rates κ , and atomic decay rates � operate
in a parameter regime where the single-atom cooperativity
parameter C

C ≡ g2

κ�
, (1)

is, at most, one or two orders of magnitude larger than
one [1–6]. However, the practical realization of atom-cavity
quantum computing schemes usually requires C’s above 200
to achieve single-operation fidelities above 90% [7–14]. The
only alternative are probabilistic quantum computing schemes.
These promise fidelities above 90% even when C = 10, but
rely either on the detection of single photons [15,16] or on
the observation of macroscopic fluorescence signals [17].
Because of being conditional, they require relatively high
photon detection efficiencies and cavity mirrors with low
absorption coefficients. Using currently available experimental
setups to entangle atoms in optical cavities with a very high
fidelity therefore requires a different approach than previously
proposed in the literature.

Recently it has been pointed out by several authors [18–26]
that it is possible to generate entanglement in a controlled way
by simply cooling qubits into well-defined, highly entangled
states. The main idea behind this approach is to design laser
fields such that the target state becomes the stationary state of
the system. State preparation schemes based on this idea are
expected to tolerate much higher spontaneous decay rates than
proposals which do not use dissipation in this way. Moreover,
when cooling a system into an entangled state, the fidelity of
the state preparation no longer depends on the initial state of the
system which makes the entanglement generation more robust
against errors. Although being very promising, this approach
has only recently been studied as a tool to entangle two atoms
trapped inside the same optical cavity. The only examples are
Kastoryano et al. [27] and Wang and Schirmer [28].

In this paper we follow similar ideas as Refs. [27,28] and
design an entangling scheme to cool two atoms inside an
optical cavity into a maximally entangled state. As proposed
in Ref. [23], and in close analogy to the laser sideband cooling

technique of trapped ions [29], we employ level shifts and
apply laser fields such that only the target state experiences
off-resonant driving. Every ground state of the system other
than the target state couples resonantly and sufficiently strong
to rapidly decaying excited states. Doing so, the target state
becomes the stationary state of the quantum system. It is
reached independently of the initial state of the system after
a certain transition time. As in laser sideband cooling, the
fidelity of the final state reaches 1 when the detuning of the
target state becomes much larger than the relevant laser Rabi
frequencies and decay rates.

The concrete experimental setup which we consider in
this paper is shown in Fig. 1. It consists of two atoms
simultaneously trapped inside an optical cavity. The main
decay channels in this system are the spontaneous emission
of photons from the excited atomic state |2〉 with decay rate
� and the leakage of photons through the cavity mirrors with
decay rate κ . Both atoms are driven by external laser fields
which couple, respectively, to the 0–1 and the 1–2 transitions.
In the following, we design the detunings and Rabi frequencies
of these laser fields such that the stationary state of the
atom-cavity system is to a very good approximation given
by the maximally entangled atomic ground state

|+〉 = (|01〉 + |10〉)/
√

2, (2)

while there is no photon inside the cavity. As we shall see
below, individual laser addressing of the atoms is not required.
The entangling scheme proposed in this paper uses an energy
shift of the target state which is due to a nonzero atom-cavity
coupling constant g as well as spontaneous emission from
excited states. This makes it possible to prepare the state in
Eq. (2) with a fidelity above 90% even when C is as low as 20
and without having to detect photons.

One advantage of the state preparation scheme presented in
this paper is that it predicts higher fidelities than the recently
proposed entangling schemes in Refs. [27,28] although they
employ similar level shifts to cool two the atoms into a
maximally entangled state. The authors of Ref. [27] used a
similar atomic level scheme as the one shown in Fig. 1, but
with the addition of a driven microwave transition between the
triplet states. The authors of Ref. [28] relied on the presence
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FIG. 1. (Color online) (a) Experimental setup to cool two atoms
inside an optical cavity into a maximally entangled state. Here, �

and κ denote the spontaneous atom and cavity decay rates while �0

and �1 are the relevant laser Rabi frequencies. (b) Level scheme of
a single-atom. The 1–2 transition couples resonantly with coupling
constant g to the cavity field. The spontaneously decay rates for the
0–2 and the 1–2 transitions are �0 and �1 with � = �0 + �1.

of an external magnetic field gradient to produce the required
level splittings.

There are five sections in this paper. In the next section, we
introduce a four-level toy model and discuss how to cool it
into one of its ground states. The reason for the introduction
of this toy model is that the entangling scheme proposed
in this paper cannot be modeled easily analytically. There
is no interaction picture in which the system Hamiltonian
becomes time independent. Although being much simpler,
the toy model in Sec. II captures all the basic features of
the proposed state preparation scheme, provides much insight
into its cooling mechanism, but is nevertheless analytically
tractable. In Sec. III, we present all the details of our entangling
scheme, draw analogies to the toy model, and support our
claims about the parameter dependence of its fidelity with
the help of numerical simulations. We finally summarize our
findings in Sec. IV.

II. STATE PREPARATION IN A TOY MODEL

In this section we consider a simple four-level system and
pose the task to prepare it in one of its two ground states.
The role of the experimental parameters in this simple model
(i.e., its laser Rabi frequencies, detunings, and spontaneous
decay rates) can later be compared to the atom-cavity coupling
constant g, the cavity and the atom decay rates κ and �, and
laser parameters �i and δi in the entangling scheme proposed
in Sec. III. Our understanding of the toy model will allow us
to correctly predict the general dependence of the fidelity and
the cooling rate of the proposed entangling scheme on these
experimental parameters.

A. Theoretical model

The toy model contains only two ground states 0 and 1 and
two excited states 2 and 3, as shown in Fig. 2. For simplicity, we
assume that the decay rates for all four decay channels are the
same and denote the overall spontaneous decay rate of levels 2
and 3 by �. Moreover, we assume that the system is driven by
a single laser field of frequency ωL and Rabi frequency �. This
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FIG. 2. (Color online) The toy-model level scheme. The 0–2 and
the 1–3 transitions are driven by a laser field with Rabi frequency
� and a detuning � with respect to the 0–2 transition. The excited
atomic states both decay spontaneously into |0〉and |1〉with a decay
rate �/2.

laser is in resonance with the 1–3 transition, but detuned from
the 0–2 transition by a detuning �. The spontaneous emission
of photons is in the following taken into account using the
master equation

�̇(t) = − i

h̄
[Hcond� − �H

†
cond] + R(�), (3)

where � is the density matrix of the system. The conditional
Hamiltonian Hcond describes the time evolution under the
condition of no photon emission, while R(�)

R(�) =
∑

i=0,1

∑

j=2,3

1

2
�|i〉〈j |�|j 〉〈i|, (4)

relates to the reset state in case of a photon emission. Within
the rotating wave approximation and in the interaction picture
with respect to the free Hamiltonian

H0 =
3∑

i=0

h̄ωi |i〉〈i| − h̄�|2〉〈2|, (5)

where h̄ωi is the energy of level i, Hcond equals

Hcond = 1
2h̄�(|0〉〈2| + |1〉〈3| + H.c.) + h̄�|2〉〈2|
− 1

2 ih̄�(|2〉〈2| + |3〉〈3|), (6)

since ωL = ω2 − �.
The master equation in Eq. (3) can now be used to calculate

the fidelity of the proposed state preparation scheme (i.e., the
stationary state population of its target state |0〉) and its cooling
rate. This is most easily done using rate equations which are
a complete set of differential equations for the time evolution
of expectation values. The time derivative of an expectation
value of a time-independent operator A equals

〈Ȧ〉 = Tr(A�̇). (7)
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The above master equation hence implies that

〈Ȧ〉 = −1

2
i�〈 [A,|0〉〈2| + |1〉〈3| + H.c.] 〉

− i�〈 [A,|2〉〈2| ] 〉 −
∑

j=2,3

1

2
�〈A|j 〉〈j | + |j 〉〈j |A 〉

+
∑

i=0,1

∑

j=2,3

1

2
�〈 |j 〉〈i| A |i〉〈j | 〉. (8)

In the following we consider the Hermitian operators |i〉〈i|,
|i〉〈j | + |j 〉〈i|, and i(|i〉〈j | − |j 〉〈i|) and denote their (real)
expectation values by

Pi =〈i|�|i〉,
kij = 2Im〈i|�|j 〉, (9)

lij = 2Re〈i|�|j 〉.
Substituting these operators into Eq. (8) yields

Ṗ0 = − 1
2�k02 + 1

2�(P2 + P3),

Ṗ1 = − 1
2�k13 + 1

2�(P2 + P3),

Ṗ2 = 1
2�k02 − �P2,

Ṗ3 = 1
2�k13 − �P3, (10)

k̇02 = �(P0 − P2) + �l02 − 1
2�k02,

k̇13 = �(P1 − P3) − 1
2�k13,

l̇02 = −�k02 − 1
2�l02.

These seven equations form a complete set of rate equations
and are sufficient to analyze the time evolution of the
population P0 in the target state |0〉 which equals the fidelity F .

B. Basic idea

Suppose we aim to transfer the toy model in Fig. 2 into
one of its ground states, for example, the |0〉 state, with a very
high fidelity and without having to control the initial state of
the system. This is possible when laser driving is applied such
that the |0〉 state becomes the stationary state of the toy model
as it applies when the laser detuning for the 0–2 transition is
much larger than the other system parameters, that is, when

� � �,�. (11)

This condition guarantees that it is much more likely for the
system to spontaneously decay into the |0〉 state when being
in one of the other three states, than being driven out of it [23].
Once the system has reached its stationary state it therefore
remains there with a very high probability.

This is confirmed by Fig. 3 which shows the time depen-
dence of 1 − F , that is, of the total population in states other
than the target state |0〉, for a wide range of experimental
parameters. The solid lines in this Fig. 3 are the result of a
numerical integration of the rate equations in Eq. (10) which
assumes the worst case scenario with the toy model initially
in |1〉. The plots show exponential cooling toward the target
state until the system reaches a stationary state. The fidelity of
the state preparation equals the population of the |0〉 state and
is indeed very close to unity, as long as condition (11) applies.
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FIG. 3. (Color online) Logarithmic plot of the time dependence
of the distance 1 − F from the target state |0〉 for different values of
�/� and �/�. The system is initially in |1〉. In the upper plot we
have � = 0.2 �. In the lower plot we have � = 0.05 �. The thick
lines are the numerical solutions of the rate equations in Eq. (10). The
thin lines illustrate the analytical solution in Eq. (21).

The cooling rate and the fidelity of the state preparation both
depend on the relative size of � and � with respect to the
detuning �.

C. Stationary state fidelity

To identify the best way of preparing the target state, we now
derive approximate analytical expressions for the stationary
state fidelity F and the cooling rate γc, which is a measure
for the time it takes the system to reach its stationary state.
Since F is the stationary state population P0 in the |0〉state, it
can be calculated simply by setting the time derivatives of the
expectation values in Eq. (10) equal to zero. Doing so, we find
that

F = 1 − 3�2 + �2

4�2 + 4�2 + 2�2
. (12)

For relatively large detunings �, as in Eq. (11), this equation
simplifies to

F = 1 − 3�2 + �2

4�2
. (13)

This result confirms that the fidelity is close to 1 in the
parameter regime given by Eq. (11). Figure 4 illustrates the
effects of finite � and �. It also shows that an increase
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FIG. 4. (Color online) Contour plot which shows the stationary
state fidelity F in Eq. (12) as a function of �/� and �/�.

in the Rabi frequency � reduces the stationary state fidelity
more rapidly than an increase in the decay rate �.

D. Heating and cooling rates

To see how quickly the toy model reaches its stationary
state, we now introduce the notion of a cooling and a heating
rate which we denote γc and γh, respectively. For simplicity,
and since we are anyway only interested in the general scaling
of these rates with the experimental parameters, we assume
that these rates do not depend on the current state � of the
system. Invoking the conservation of probability flux, we then
find that

Ṗ0 = γc (1 − P0) − γh P0. (14)

The principle here is that the rate at which the fidelity (i.e.,
the current population in the |0〉 state) changes in time is equal
to the rate at which population is cooled into the target state
minus the rate at which population is heated out of the target
state. When the system reaches its stationary state, the fidelity
remains constant. The above equation hence implies

γh F = γc (1 − F ). (15)

Since we already know F [cf. Eq. (12)], this relation can be
used to obtain the cooling rate after obtaining an estimate for
the heating rate. As we shall see below, it is easier to derive an
approximate expression for γh, than calculating γc directly.

Considering the parameter regime in Eq. (11), the rate
equations in Eq. (10) can be simplified via an adiabatic
elimination. Only the coherences k02 and l02 evolve on the
fast time scale given by �. Setting their time derivatives equal
to zero, we find that

k02 = 2��

�2 + 4�2
(P0 − P2). (16)

Assuming that the toy model is in |0〉 (i.e., that P0 = 1 and
P1 = P2 = P3 = 0) and substituting the above expression for
k02 into the rate equation for P0 yields

Ṗ0 = − ��2

�2 + 4�2
P0. (17)

Comparing this equation with Eq. (14) for P0 = 1, we find that
the heating rate is to a very good approximation given by

γh = ��2

�2 + 4�2
. (18)

This is the rate at which the target state |0〉 loses its population.
Substituting this result and Eq. (12) into Eq. (15), we get

γc = �2�(4�2 + �2 + �2)

(4�2 + �2)(3�2 + �2)
. (19)

Figure 5 shows this cooling rate γc for a wide range of
experimental parameters. For relatively small Rabi frequencies
�, the cooling process becomes faster with increasing �.
However, it is not worth increasing � beyond a certain size
which saturates γc. In the parameter regime given by Eq. (11),
the cooling rate γc simplifies to

γc = �2�

3�2 + �2
, (20)

which no longer depends on � but only holds for sufficiently
large detunings.

To get a feeling for the accuracy of the cooling rate γc in
Eq. (19), we now solve Eq. (14) analytically and compare the
result with exact numerical solutions of the rate equations in
Eq. (10). Doing so and assuming P0(0) = 0 we find that

P0(t) = γc

γc + γh

(1 − e−(γc+γh)t ). (21)

Figure 3 compares this analytical result with numerical
solutions of P0(t) for different experimental parameters �/�
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FIG. 5. (Color online) Contour plot which shows the cooling rate
γc in Eq. (19) as a function of �/� and �/�.
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and �/�. It shows that Eq. (19) reflects the general parameter
dependence of the cooling rate on �/� and �/� correctly.
The above approximate solution is in general slightly higher
than the actual cooling rate. The reason for this is that the
heating rate in Eq. (18) has been calculated for the case, where
the system is initially in |0〉 (i.e., when it is the highest).

E. Choosing experimental parameters

Figure 4 shows that maximizing the stationary state fidelity
F requires a Rabi frequency � as small as possible. However,
from Fig. 5 we see that we only obtain high cooling rates
when � is relatively large. To minimize the state preparation
time while maintaining a high fidelity, we therefore suggest
using a laser pulse with a time-dependent Rabi frequency to
prepare the target state. This laser pulse should be large initially
and should reach zero by the end of the cooling process. For
example, one could choose

�(t) = 3�0

[1 + γc(0)t]2
, (22)

with γc(0) being the cooling rate in Eq. (20) for the initial
Rabi frequency �(0) = �0. Alternatively, one could choose
an exponentially decreasing Rabi frequency. However, in this
case, � would drop off too rapidly, thereby resulting in a
fidelity that is far from optimal. Here we do not discuss how
to optimize the spontaneous decay rate since � is in general
fixed.

Figure 6 confirms that choosing the Rabi frequency � as
in Eq. (22) indeed yields a significant speed up compared
to time-independent Rabi frequencies. We also observe a
stationary state fidelity which is close to the theoretical
maximum obtained when setting � = 0. From Eq. (13)
we see that this maximum is to a very good approximation
given by

F (� = 0) = 1 − �2

4�2 + 2�2
. (23)

It is indicated by a dashed line in Fig. 6. In the next section we
use similar time-dependent laser pulses to prepare two atoms
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FIG. 6. (Color online) (a) Logarithmic plot of the time depen-
dence of the distance 1 − F from the target state |0〉 for the case where
the system is initially in |1〉 and where � = 0.2 � and � = 0.05 �.
(b) Same as (a) but for a time-dependent laser pulse with a Rabi
frequency �(t) as in Eq. (22) with �0 = 0.05 �. (c) Theoretical
minimum for 1 − F obtained from Eq. (23) for � = 0.2 �.

inside an optical cavity relatively fast and with a high fidelity
in a maximally entangled state.

III. ENTANGLING SCHEME

The toy model described in the previous section is based
on a simple principle: driving populations out of all undesired
states resonantly while driving the target state off-resonantly.
This approach can indeed be used to prepare target states
with a high fidelity [23]. In this section, we use this idea
to prepare two atoms inside an optical cavity (cf. Fig. 1)
in the maximally entangled state |+〉 in Eq. (2). The first
half of this section presents a theoretical description of
the atom-cavity system. After identifying its dressed states,
we select appropriate laser Rabi frequencies and detunings.
As we shall see below, the state preparation requires three
different driving lasers, but there is no need to address atoms
individually. A comparison with the toy model introduced in
the previous section allows us to predict the dependence of
fidelity and cooling rate of the proposed state preparation
scheme on the experimental parameters with a very high
accuracy.

A. System Hamiltonian without laser driving

The experimental setup which we consider in this paper
consists of two atoms placed inside an optical cavity as shown
in Fig. 1. Each atom contains a 
-type level configuration
with h̄ωj and |j 〉 denoting the corresponding energies and
energy eigenstates (j = 0,1,2). Suppose the 1–2 transition
of each atom couples resonantly with coupling strength g to
the quantized cavity field mode with frequency ωc. Then the
Hamiltonian Hsys of this system equals

Hsys =
2∑

i=1

h̄g |1〉ii〈2|c† + H.c. +
2∑

i=1

2∑

j=0

h̄ωj |j 〉ii〈j |

+ h̄ωc c†c, (24)

in the absence of external laser driving. Here c and c† are
the cavity photon annihilation and creation operators for
a single photon inside the optical cavity. As we shall see
below, it is important that the atomic states |0〉 and |1〉
differ in energy by an amount which is significantly larger
than h̄g.

In the following, we identify the relevant energy eigenstates
of this Hamiltonian since this will allow us to identify
appropriate laser drivings and detunings for the proposed state
preparation scheme. To do so, we denote states with atom 1 in
|i〉, atom 2 in |j 〉and n photons in the cavity by |ij,n〉. Moreover
we notice that the Hamiltonian Hsys preserves the total amount
of population in the excited atomic state |2〉 and the cavity
field mode. It therefore acts on fixed excitation subspaces of
the complete Hilbert space whose energy eigenstates can be
calculated separately. The eigenstates and eigenvalues of the
subspace of states with no population of the excited atomic
state |2〉 and no photons in the cavity are summarized in
Table I. Table II shows the eight energy eigenstates and the
corresponding energy eigenvalues of the subspace of states
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TABLE I. Energy eigenstates and energy eigenvalues of the
system Hamiltonian Hsys in Eq. (24) for the subspace with no atom
in |2〉 and no photons in the cavity.

Energy eigenstate Energy

|00,0〉 0
|+ ,0〉≡ (|01,0〉+ |10,0〉)/√2 h̄ω1

|− ,0〉≡ (|01,0〉− |10,0〉)/√2 h̄ω1

|11,0〉 2h̄ω1

with either one atom in |2〉 or one photon in the cavity and
adopts the notation

|μ1〉 ≡ (|21,0〉− |12,0〉)/
√

2,

|μ0,±〉 ≡ (|02,0〉 − |20,0〉 ± |01,1〉∓ |10,1〉)/2,
(25)

|λ0,±〉 ≡ (|02,0〉 + |20,0〉 ± |01,1〉 ± |10,1〉)/2,

|λ1,±〉 ≡ (|12,0〉 + |21,0〉 ±
√

2|11,1〉)/2.

Fortunately, there is no need to identify the energy eigenstates
of the atom-cavity system of the subspace of states with more
than one excitation in the atomic state |2〉 and the cavity field
mode. The reason for this is that these states do not couple to the
states in Table I in case of laser driving. Therefore they do not
have to be taken into account when choosing laser parameters
such that only the | + ,0〉 state experiences off-resonant laser
driving.

B. Laser driving

As we shall see below, the state preparation of the
maximally entangled atomic state |+〉 in Eq. (2) requires the
simultaneous excitation of the two atoms with three different
laser fields. In the following we assume that the 0–2 transition
of each atom is driven by two different lasers with Rabi
frequencies �

(k)
L0 and frequencies ω

(k)
L0 , respectively, (k = 1,2).

The 1–2 transition of each atom should moreover be driven
by a laser field with Rabi frequency �1 and frequency ωL1.
The laser Hamiltonian in the Schrödinger picture and the usual
rotating wave approximation is then given by

HL(t) =
2∑

i=1

2∑

k=1

1

2
h̄�

(k)
0 eiω

(k)
L0 t |0〉ii〈2| + H.c.

+
2∑

i=1

1

2
h̄�1 eiωL1t |1〉ii〈2| + H.c. (26)

TABLE II. Energy eigenstates and energy eigenvalues of the
system Hamiltonian Hsys in Eq. (24) for the subspace of states with
either one atom in |2〉 or one photon in the cavity. The table uses the
notation introduced in Eq. (25).

Energy eigenstate Energy

|00,1〉 h̄ωc = h̄(ω2 − ω1)
|μ1〉 h̄(ω1 + ω2)
|μ0,±〉 h̄(ω2 ± g)
|λ0,±〉 h̄(ω2 ± g)
|λ1,±〉 h̄(ω1 + ω2 ± √

2g)

The realization of this Hamiltonians does not require individ-
ual laser addressing since both atoms experience exactly the
same laser driving.

To see how to best choose the laser frequencies ω
(k)
L0 and

ωL1, we now consider the effect of this laser Hamiltonian on
the subspace with no excitation in |2〉 and in the cavity mode.
This effect can be described by the restricted laser Hamiltonian
H̃L defined as

H̃L(t) ≡ P HL(t) P, (27)

with the projector P given by

P =
∑

x=+,−
|μ0,x〉〈μ0,x| +

∑

j=0,1

∑

x=+,−
|λj ,x〉〈λj ,x|

+ |μ1〉〈μ1|. (28)

Using the eigenvectors of the undriven atom-cavity system
Hamiltonian which can be found in Tables I and II one can
show that this Hamiltonian equals

H̃L(t) =
2∑

k=1

∑

x=+,−

1

2
√

2
h̄�

(k)
0 eiω

(k)
L0 t [|00,0〉〈λ0,x|

+ |+ ,0〉〈λ1,x|] +
2∑

k=1

1

2
h̄�

(k)
0 eiω

(k)
L0 t |− ,0〉〈μ1|

+
∑

x=+,−

1

2
√

2
h̄�1 eiωL1t [|+ ,0〉〈λ0,x|

+ |− ,0〉〈μ0,x|+ |11,0〉〈λ1,x|] + H.c., (29)

in the Schrödinger picture. Changing into an interaction picture
in which H̃L(t) becomes time independent is not possible since
there are more laser fields than atomic transitions.

To make it nevertheless easy to identify the relevant
laser Rabi frequencies and detunings, we now transform
the laser Hamiltonian H̃L(t) for the subspace with zero and
one excitation into the interaction picture with respect to
system Hamiltonian in Eq. (24). Taking the eigenvalues of
this Hamiltonian which can be found in Tables I and II into
account we obtain another time-dependent Hamiltonian from
which we can directly read of the information which is relevant
for the construction of an entangling scheme via cooling. The
result of this calculation is summarized in Table III which
shows all laser-driven transitions and states the corresponding
relevant laser parameters.

C. Effect of spontaneous emission

As has been illustrated already in Sec. II, dissipation is an
essential component of state preparation via cooling. In the
atom-cavity system analysed in this section, dissipation can
occur via the photon emission from the excited atomic state
|2〉 with the spontaneous decay rate � and via the leakage of a
photon through the cavity mirrors with the spontaneous decay
rate κ . The conditional Hamiltonian that describes the time
evolution of the atom-cavity system between photon emissions
equals

Hcond = Hsys + HL(t) − i

2
h̄�

2∑

i=1

|2〉ii〈2| − i

2
h̄κ c†c . (30)
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TABLE III. Most relevant laser-driven transitions of the atom-
cavity system in the dressed state picture. The table shows the
respective ground and excited states and indicates the corresponding
laser parameters.

Ground Excited Rabi Effective
state state frequency detuning

|00,0〉 |λ0,±〉 �
(1)
0 /

√
2 ω

(1)
L0 − ω2 ± g

|λ0,±〉 �
(2)
0 /

√
2 ω

(2)
L0 − ω2 ± g

| + ,0〉 |λ1,±〉 �
(1)
0 /

√
2 ω

(1)
L0 − ω2 ± √

2g

|λ1,±〉 �
(2)
0 /

√
2 ω

(2)
L0 − ω2 ± √

2g

|λ0,±〉 �1 ωL1 + ω1 − ω2 ∓ g

| − ,0〉 |μ1〉 �
(1)
0 ω

(1)
L0 − ω2

|μ1〉 �
(2)
0 ω

(2)
L0 − ω2

|μ0,±〉 �1 ωL1 + ω1 − ω2 ∓ g

|11,0〉 |λ1,±〉 �1 ωL1 + ω1 − ω2 ∓ √
2g

The first two terms in this equation are the system Hamiltonian
Hsys in Eq. (24) and the laser Hamiltonian HL(t) in Eq. (26).
In case of an emission, the density matrix of the atom-cavity
system changes up to normalization into

R(�) =
∑

j=0,1

∑

i=1,2

�j |j 〉ii〈2|�|2〉ii〈j | + κc�c†, (31)

where �j denotes the spontaneous decay rate of the atomic 2–j

transition. The overall decay rate of the excited atomic state
is given by � = �0 + �1. Overall, the time evolution of the
system in the presence of spontaneous emission is described
by master equations which are of exactly the same form as the
master equations in Eq. (3).

D. Appropriate laser parameters

As already mentioned above, the target state of the state
preparation which we propose here is the maximally entangled
atomic state |+〉 in Eq. (2). To assure that this state becomes
the stationary state of the atom-cavity system in Fig. 1, we
need to choose the laser frequencies ω

(1)
L0 , ω

(2)
L0 , and ωL1 such

that the |+ ,0〉 experiences only off-resonant driving, while the
states |00,0〉, |− ,0〉, and |11,0〉 couple resonantly to at least
one of the three driving lasers. Having a closer look at Table
III, we see that this applies, if we choose

ω
(1)
L0 = ω2 − g,

ω
(2)
L0 = ω2, (32)

ωL1 = ω2 − ω1 −
√

2g.

Table IV shows the effect of this choice of laser frequencies
on the sixteen transitions which need to be taken into account
when designing the state preparation scheme proposed in this
paper.

The system Hamiltonian Hsys treats both atoms in exactly
the same way. Its eigenvectors are therefore either symmetric
or antisymmetric with respect to an exchange of the two
atoms. The same applies to the effective laser Hamiltonian
H̃L(t). Since both atoms experience exactly the same Rabi

TABLE IV. Transitions between dressed states driven near res-
onance by the application of three lasers with Rabi frequency �

(1)
0 ,

�
(2)
0 , and �0.

Ground Excited Rabi Effective
state state frequency detuning

|00,0〉 |λ0,+〉 �
(1)
0 /

√
2 −2g

|λ0,−〉 �
(1)
0 /

√
2 0

|λ0,±〉 �
(2)
0 /

√
2 ∓g

|+ ,0〉 |λ1,±〉 �
(1)
0 /

√
2 ∓(

√
2 ± 1)g

|λ1,±〉 �
(2)
0 /

√
2 ∓√

2g

|λ0,±〉 �1 −(
√

2 ± 1)g

|− ,0〉 |μ1〉 �
(1)
0 −g

|μ1〉 �
(2)
0 0

|μ0,±〉 �1 −(
√

2 ± 1)g

|11,0〉 |λ1,+〉 �1 −2
√

2g

|λ1,−〉 �1 0

frequencies, the lasers excite either transitions between two
symmetric states or two antisymmetric states. This allows us
to consider the symmetric and the antisymmetric state space
separately when analyzing the effect of the laser driving in
the dressed state picture of the atom-cavity system. There
are three symmetric ground states and one antisymmetric
ground state. These are {|00,0〉, |+ ,0〉, |11,0〉} and {|− ,0〉},
respectively.

Figure 7 illustrates the laser driving experienced by the
target state |+ ,0〉. Since this state is a symmetric state, the
relevant level configuration involves only the target state and
the four symmetric states with one excitation in |2〉 or the
cavity mode. As one can see from Table IV, in the dressed
state picture, these three lasers involve |+ ,0〉 in six different
transitions. For simplicity, we show only the least detuned
couplings for each laser. We see that the target state |+ ,0〉
experiences indeed only off-resonant driving. The smallest
and therefore most relevant detuning is given by

δmin = (
√

2 − 1)g, (33)

as long as the frequency ω1 is sufficiently larger than the atom-
cavity coupling constant g. All other states with no excitation
are resonantly driven by one laser field. This is illustrated in
Fig. 8 which shows the resonant transitions in the symmetric
and the antisymmetric subspace separately. One lasers couples
|00,0〉 to |λ0,−〉with Rabi frequency �

(1)
0 /

√
2. Another laser

couples |− ,0〉 to |μ1〉 with Rabi frequency �
(2)
0 /

√
2, while

third laser drives |11,0〉into |λ1,−〉with Rabi frequency �1. In
principle, we would like these lasers which empty unwanted
states to be relatively strong. However, it is not possible
to increase them without increasing also the Rabi frequen-
cies for the off-resonant driving of the target state shown
in Fig. 7.
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|λ0,+

|λ0,

|λ1,

|λ1,+

ω1

ω2

ω2 + ω1

|+, 0

1√
2
Ω1

1√
2
Ω(1)

0

1√
2
Ω(2)

0

(
√

2 − 1)g

√
2g

√
2g

(
√

2 − 1)g

FIG. 7. (Color online) Level configuration showing the laser
driving, Rabi frequencies, and detunings experienced by the target
state |+ ,0〉in the dressed state. For simplicity, we show only the least
detuned couplings.

E. Fidelities and cooling rates for constant laser driving

Equation (33) shows that the minimum detuning experi-
enced by the target state δmin depends only on the atom-cavity
coupling constant g. Equation (11) in Sec. II therefore suggests
that the stationary state of the atom-cavity system in Fig. 1

is to a very good approximation given by the state |+ ,0〉 as
long as

ω1 � g � �, κ,�
(1)
0 ,�

(2)
0 ,�1. (34)

In other words, for this parameter regime we can expect
the atoms to be with a very high fidelity in the maximally
entangled state |+〉 in Eq. (2) after a certain transition time t .
A comparison with the toy-model state preparation scheme in
Sec. II even yields approximate solutions for the fidelity F and
the cooling rate γc of the proposed entangling scheme.

For simplicity, we assume in the following that all three
cooling lasers have the same Rabi frequency � and that the two
atomic decay rates, �0 and �1, are equal. The only remaining
spontaneous decay rates are the spontaneous atom decay rate
� and the cavity photon leakage rate κ . For example, the
symmetric state (|λ0,+〉+ |λ0,−〉)/√2 with one atom in |2〉
has the spontaneous decay rate �, while the state (|λ0,+〉−
|λ0,−〉)/√2 with one photon in the cavity decays with κ . We
infer from this that the fidelity of the proposed entangling
scheme depends on the size of both decay rates. Taking this into
account, we replace the spontaneous decay rate � in Eq. (20)
in the following with the average of κ and �

� −→ 1
2 (κ + �). (35)

The analog of the laser detuning � in the toy-model state
preparation scheme is the detuning δmin in Eq. (33) which is
the minimum laser detuning experienced by the target state
|+ ,0〉 during the cooling process. Taking into account that

� −→ δmin, (36)

|11, 0

|00, 0

|λ0,+

|λ0,

|λ1,

|λ1,+

|00, 1

0

ω1

2ω1

ω2 − ω1

ω2

ω2 + ω1

ω1

ω2

ω2 + ω1

|μ0, +

|μ0,

|μ1

Ω(2)
0

(a) (b)

2
√

2g

2g2g

|+, 0 |−, 0

1√
2
Ω(1)

0 1√
2
Ω1

FIG. 8. (Color online) Level configuration showing all the resonantly driven transitions in the dressed state picture, their Rabi frequencies,
and their detunings in the subspace with zero or one excitation in |2〉 or the cavity mode. (a) Symmetric subspace with ground states |00,0〉,
|+ ,0〉, and |11,0〉. (b) Antisymmetric subspace with ground state |− ,0〉.
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Eqs. (20) and (13) suggest that γc and F are to a very good
approximation given by

γc = 2�2(κ + �)

12�2 + (κ + �)2
,

(37)

F = 1 − 12�2 + (κ + �)2

16(
√

2 − 1)2g2
.

This result confirms Eq. (34) which suggests that fidelities F

close to one are only obtained when g is much larger than all
other system parameters.

The remainder of this paper confirms these approximate
solutions with the help of a numerical analysis of the proposed
entangling scheme. The following analysis is based on the
quantum jump approach [30] which allows us to simulate all
the possible trajectories of the atom-cavity system in Fig. 1. By
averaging over many trajectories, we obtain an approximate
solution of the master equation in Eq. (3). To calculate the
no-photon time evolution of the system we use the conditional
Hamiltonian Hcond in Eq. (30). In case of a photon emission
we reset the atom-cavity system such that its state after a
photon emission is on average given by R(�)�t with R(�)
as in Eq. (31). For simplicity, we consider only relatively
small Rabi frequencies. In this way we avoid the population
of highly excited states. The population of such states is not
expected to decrease the fidelity of the final state since they
decay relatively rapidly. However, in this way we can restrict
the size of the Hilbert space which has to be taken into account
during simulations to states with at most three photons in the
cavity.

Let us first have a closer look at how changing the relative
size of κ with respect to � affects the fidelity F of the state
preparation. Figure 9 shows F for different spontaneous decay
rates κ and �. These are chosen such that the single-atom
cooperativity parameter C in Eq. (1) remains constant at
C = 25. Each data point represents the average fidelity
calculated from a time series like the one shown in Fig. 10.
As a result we find that the proposed state preparation scheme

×

×

×
×××××

×

−1.0 −0.5 0.0 0.5 1.0
0.0

0.2

0.4

0.6

0.8

1.0

( − Γ)/g

F

κ

FIG. 9. (Color online) Stationary state fidelity F of the proposed
entangling scheme for different spontaneous decay rates κ and � and
� = 0.03 g obtained from a quantum jump simulation. Here κ and �

are varied such that the cooperativity parameter C remains constant
at C = 25.

0 200 400 600 800 1000

10
1

10
0

t in units of 1/g

1
F

a

b

FIG. 10. (Color online) Curve a: Logarithmic plot of the time
dependence of the distance 1 − F from the target state |0〉 for the case
where the system is initially in |00,0〉and where κ = � = 0.2 g and
� = 0.03 g. Curve b: Same as curve a but for a time-dependent laser
pulse with a Rabi frequency �(t) as in Eq. (39) with �0 = 0.015 g.

works best when � − κ = 0.15 g. This implies that ideally one
should have

κ = 2�, (38)

when C = 25. We therefore assume that this applies in the
remainder of this section.

The main result of this section is an estimation of the
stationary state fidelity of the maximally entangled atomic
state |+〉 which can be achieved with the proposed entangling
scheme. To establish this numerically, we use a series of time
evolutions such as those shown in Fig. 10 and average over the
fidelity once the system is approximately in its stationary state.
Figure 11 shows the stationary state fidelity of the target state
as a function of the cooperativity parameter C for a constant
laser Rabi frequency �. The numerical results are compared

0 20 40 60 80 100
0.5

0.6

0.7

0.8

0.9

1.0

C

F

b

a

FIG. 11. (Color online) Stationary state fidelity F of the proposed
entangling scheme as a function of the cooperativity parameter C for
� = 0.03 g and κ = 2�. (a) Numerical solution of the time evolution
of the system using the quantum jump approach. (b) Analytical result
in Eq. (37).
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with the analytical result for F in Eq. (37). Indeed we find very
good agreement between analytical and numerical results. It
is clear from Fig. 11 that the achievable fidelity F increases
rapidly with increasing cooperativity parameter C. However,
fidelities above 90% are possible, even for a cooperativity
parameter C as low as 20.

F. Minimizing the state preparation time

As in Sec. II, we find that a relatively large cooling rate
γc requires relatively large Rabi frequencies. At the same
time, we only obtain a fidelity F close to unity for very
small Rabi frequencies. To maximize the fidelity of the state
preparation while maintaining a substantial cooling rate, we
therefore proceed in the following as in Sec. II E and assume
a time-dependent Rabi frequency �. Similarly as in Eq. (22),
we assume in the following that

�(t) = 6�0

[1 + γc(0)t]2
, (39)

where γc(0) denotes the cooling rate of the entangling
scheme for the initial Rabi frequency �(0) = �0. Figure 10
confirms that choosing a time-dependent Rabi frequency �

indeed improves the speed of the entangling scheme without
sacrificing much of its quality.

IV. CONCLUSION

In this paper, we propose an entangling scheme for two
atoms trapped inside an optical cavity. Each atom should
contain a 
-like level configuration with the ground states
|0〉 and |1〉 forming one qubit and an excited state |2〉
(cf. Fig. 1). Three laser fields should be applied simultaneously.
Two of them continuously drive the 0–2 transition which
is in resonance with the cavity mode, while the third laser
drives the 1–2 transition. Individual laser addressing of the
atoms is not required. Most importantly, the laser detunings
should be chosen as proposed in Eq. (32) in Sec. III D. As
a result, the maximally entangled atomic ground state |+ ,0〉
with no photons in the cavity becomes the stationary state of
the atom-cavity system. To complete the state preparation, the
laser fields should be turned off after a certain transition time.
The presence of nonzero spontaneous decay channels (i.e.,
the leakage of photons through the cavity mirrors and direct
spontaneous emission from the atoms) are essential for the
scheme to work.

The proposed state preparation scheme is a concrete
realisation of a recent proposal to cool atoms into entangled
state [23]. Choosing the laser detunings as proposed in Eq. (32)
guarantees that only the target state |+ ,0〉 experiences off-
resonant driving. All other states with no population in |2〉 and
in the cavity mode interact resonantly with one of the three
applied laser fields. As in laser sideband cooling [29], this

makes it much more likely for the atom-cavity system to decay
into the target state than being driven out of it. As a result,
most of the population of the system accumulates in |+ ,0〉
with both atoms in a well-defined, maximally entangled state.
Since the relevant detuning of this state is essentially given
by the atom-cavity coupling constant g, the analogy to laser
sideband cooling suggest that the scheme works best when all
other system parameters are much smaller than g.

Due to laser driving with three different laser fields, it
is not possible to solve the time evolution of the proposed
entangling scheme analytically. The reason is that there is no
interaction picture in which the Hamiltonian of the system
becomes time independent. To obtain at least approximate
analytical solutions for the cooling rate γc and the stationary
state fidelity F [cf. Eq. (37)], Sec. II discusses a closely related
state preparation scheme for a much simpler analytically
tractable toy model. A comparison with this toy model
provides much insight into the state preparation via cooling
as well as analytical results. These are confirmed in Sec. III E
by extensive numerical solutions of the time evolution of the
atom-cavity system in Fig. 1. Section III F finally suggests a
method to speed up the state preparation without sacrificing
its fidelity by using time-dependent laser fields with rapidly
decreasing Rabi frequencies [cf. Eq. (39)].

Compared to other recent entangling schemes for atom-
cavity systems [27,28], the scheme proposed here predicts
higher fidelities for the same experimental parameters. As
illustrated in Fig. 11 in Sec. III E, it can achieve fidelities above
90% even when the single-atom cooperativity parameter C is
as low as 20. With a cooperativity parameter C = 25 we can
achieve a fidelity of 93%, while Ref. [27] predicts fidelities
above 92% only for C > 50. The authors of Ref. [27] used a
similar level scheme as our proposal, but with the addition of
a driven microwave transition between the triplet states. The
authors of Ref. [28] required the presence of a magnetic field
gradient to produce the required level splittings to cool atoms
into an entangled state. Compared to other quantum computing
schemes using dissipation [7–9,11,13–17], the state prepara-
tion scheme discussed here no longer relies on the detection of
single photons or macroscopic fluorescence signals to herald
the success of the state preparation. Its implementation might
already be in reach with current technology.
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[21] B. Kraus, H. P. Büchler, S. Diehl, A. Kantian, A. Micheli, and

P. Zoller, Phys. Rev. A 78, 042307 (2008).
[22] F. Verstraete, M. M. Wolf, and J. I. Cirac, Nature Phys. 9, 633

(2009).
[23] G. Vacanti and A. Beige, New J. Phys. 11, 083008 (2009).
[24] X. T. Wang and S. G. Schirmer, Phys. Rev. A 80, 042305 (2009).
[25] F. Ticozzi and L. Viola, Automatica 45, 2002 (2009).
[26] J. Cho, S. Bose, and M. S. Kim, Phys. Rev. Lett. 106, 020504

(2011).
[27] M. J. Kastoryano, F. Reiter, and A. S. Sorensen, Phys. Rev. Lett.

106, 090502 (2011).
[28] X. T. Wang and S. G. Schirmer, e-print arXiv:1005.2114.
[29] D. J. Wineland and W. M. Itano, Phys. Rev. A 20, 1521

(1979).
[30] G. C. Hegerfeldt, Phys. Rev. A 47, 449 (1993).

022316-11

http://dx.doi.org/10.1103/PhysRevLett.99.063601
http://dx.doi.org/10.1103/PhysRevLett.104.203602
http://dx.doi.org/10.1103/PhysRevLett.104.203602
http://dx.doi.org/10.1103/PhysRevLett.75.3788
http://dx.doi.org/10.1103/PhysRevLett.75.3788
http://dx.doi.org/10.1103/PhysRevA.59.2468
http://dx.doi.org/10.1103/PhysRevA.59.2468
http://dx.doi.org/10.1103/PhysRevLett.85.1762
http://dx.doi.org/10.1103/PhysRevLett.85.1762
http://dx.doi.org/10.1103/PhysRevLett.85.2392
http://dx.doi.org/10.1103/PhysRevLett.89.187903
http://dx.doi.org/10.1103/PhysRevLett.90.097902
http://dx.doi.org/10.1103/PhysRevLett.90.097902
http://dx.doi.org/10.1103/PhysRevA.68.033817
http://dx.doi.org/10.1103/PhysRevA.68.033817
http://dx.doi.org/10.1103/PhysRevLett.91.067901
http://dx.doi.org/10.1103/PhysRevLett.91.067901
http://dx.doi.org/10.1103/PhysRevLett.95.030505
http://dx.doi.org/10.1103/PhysRevLett.95.030505
http://dx.doi.org/10.1103/PhysRevA.71.060310
http://dx.doi.org/10.1103/PhysRevLett.97.040503
http://dx.doi.org/10.1103/PhysRevLett.97.040503
http://dx.doi.org/10.1103/PhysRevA.65.042107
http://dx.doi.org/10.1103/PhysRevA.65.042107
http://dx.doi.org/10.1103/PhysRevLett.92.013602
http://dx.doi.org/10.1038/nphys1073
http://dx.doi.org/10.1103/PhysRevA.78.042307
http://dx.doi.org/10.1038/nphys1342
http://dx.doi.org/10.1038/nphys1342
http://dx.doi.org/10.1088/1367-2630/11/8/083008
http://dx.doi.org/10.1103/PhysRevA.80.042305
http://dx.doi.org/10.1016/j.automatica.2009.05.005
http://dx.doi.org/10.1103/PhysRevLett.106.020504
http://dx.doi.org/10.1103/PhysRevLett.106.020504
http://dx.doi.org/10.1103/PhysRevLett.106.090502
http://dx.doi.org/10.1103/PhysRevLett.106.090502
http://arXiv.org/abs/arXiv:1005.2114
http://dx.doi.org/10.1103/PhysRevA.20.1521
http://dx.doi.org/10.1103/PhysRevA.20.1521
http://dx.doi.org/10.1103/PhysRevA.47.449

